2.5 cm

STUDY OF THE FLUORINE A COMPOUNDS TOWARD MRI *Leave a blank line (exactly 18 pt.)* **Leave a blank line (exactly 18 pt.)**

<u>Yoshihide Hattori</u>¹, Yoshihiro Yamaguchi¹, Hitoshi Yamamoto², Tomohiro As <u>Underline for a speaker</u> Masao Takagaki⁴, and Tateaki Wakamiya¹ <u>Leave a blank line (exactly 18 pt.)</u>

2.5 cm ⁻2.5 cm

¹Faculty of Science and Technology, Kinki University, Higashi-osaka, Osaka 577-8502, Japan, ²Grad 12 pt. typeface sity, Toyonaka, Osaka 560-0043, Japan, ³College of with 1.5-line spacing (exactly 18 pt.) fecture, Sakai, Osaka 599-8231, Japan, 4Department of Neurosurgery, Aino Junior College Hospital, Ibaraki, Osaka 567-0018, Japan

Leave a blank line (exactly 18 pt.)

Dipentides containing 3-(4-fluorophenyl)alanine [Phe(F)] (1) seem to be transferred i *No subtitles* of tumor cells through the oligopeptide transporter. Furthermore, 12 pt. typeface 3-(2,3,4,5,6-T with 1.5-line spacing (exactly 18 pt.) 2) was certified to be detectable by ¹⁹F NMR up to μ M order concentration. These facts suggest that magnetic resonance imaging (MRI) based on 19F NMR measurement of the Phe(F₅)-containing peptides internalized into the tumor cells may be accessible as a promising means for diagnosis of cancer.

From the standpoint of the treatment of brain cancer or melanoma, the boron neutron capture therapy (BNCT) based on the interaction of ¹⁰B isotope and neutron has been highly noted in recent vears [11. In order to develop the practical tools for MRI and BNCT, we designed and boron-10 atoms such as **SPECINEN** Ig both fluorine and $a(F_2)-10B$] (3) and 3-(4-borono-2,6-difluorophenyl)alaninol {[Bpa(F_2)-¹⁰B]-ol} (4). In the present paper we focus on ¹⁹F NMR measurement and tumor cell killing effect of various compounds containing both fluorine and boron-10 atoms.

2.5 cm